{"id":8061,"date":"2022-06-17T11:24:26","date_gmt":"2022-06-17T16:24:26","guid":{"rendered":"https:\/\/internationalprobiotics.org\/?p=8061"},"modified":"2022-06-17T11:24:29","modified_gmt":"2022-06-17T16:24:29","slug":"the-interplay-of-ultraviolet-radiation-uvr-the-microbiome","status":"publish","type":"post","link":"https:\/\/internationalprobiotics.org\/home\/the-interplay-of-ultraviolet-radiation-uvr-the-microbiome\/","title":{"rendered":"The Interplay of Ultraviolet Radiation (UVR) & the Microbiome"},"content":{"rendered":"\n

While summer days bring more hours of welcome daylight, longer exposure to the sun\u2019s ultraviolet radiation (UVR)<\/a> can damage the skin. Sunburn, inflammation, photoaging, skin cancer, and\/or immune modulation can result. New research suggests that the skin microbiome may be a feasible target for novel strategies using probiotics and prebiotics for protection against UVR-induced skin damage.<\/p>\n\n\n\n

Skin microbiome, in brief<\/h2>\n\n\n\n

The harsh landscape of skin \u2014 nutrient-poor and acidic \u2014acts as a physical barrier to prevent the invasion of foreign pathogens while still providing a home to diverse commensal microbiota<\/a>. The healthy human skin<\/a> provides a variety of environments; some may be dry, humid, or oily, some warm or cold. Hence, the human skin harbors a multitude of diverse and complex communities of bacteria, fungi, viruses, archaea, and mites\u2014 collectively called the skin microbiome. To survive in a hostile environment, the resident microbes utilize resources present in the stratum corneum (horny outer layer), sweat (moisture secreted through pores), and sebum (oily secretion from sebaceous glands). In addition, the skin microbiome must maintain a healthy interplay with the skin\u2019s immune system for its survival.<\/p>\n\n\n\n

The skin microbiome<\/a> is involved in a broad range of molecular and cellular processes within the skin and beyond which contribute to health and disease.<\/p>\n\n\n\n

Ultraviolet radiation (UVR)<\/h2>\n\n\n\n

UVR, especially types UV-A and UV-B, can cause various local effects in the skin as well as systemic changes.<\/a> Many effects are harmful such as cellular DNA damage but others are beneficial such as positive behavioral impacts as the result of endorphin production. In addition, Vitamin D3 (cholecalciferol) is mainly generated in the skin as a response to UVR. In its biologically active form, Vitamin D3 is an important nutrient for optimal health and wellbeing. A recent study<\/a> shows a striking correlation between serum concentrations of 25(OH) D levels and the abundance of various microbes in the gut, suggesting an interaction between UVR exposure and the gut-skin axis<\/a>.<\/p>\n\n\n\n

Microbes & mechanisms of action in UVR skin effects<\/h2>\n\n\n\n

Melanin production and antioxidant effects<\/h3>\n\n\n\n

Skin pigmentation is protective against UVR. Melanin<\/a>, a broad term for a group of natural pigments, absorbs as much as 50-70% of UVR and also possesses antioxidant properties.<\/p>\n\n\n\n

Although darker skin has more protection from the sun\u2019s harmful rays<\/a> because it contains higher levels of melanin, <\/strong><\/em>people<\/em> of all skin types can burn if they don’t wear sunscreen.<\/p>\n\n\n\n

Specific microbial strains may produce compounds that could potentially be used to protect the skin from UVR<\/a> and\/or antioxidants<\/a> that may improve skin health. In one example, the topical use of Lactobacillus helveticus<\/em> supernatant on the skin had antioxidant effects on rodents<\/a>.<\/p>\n\n\n\n

Protection from photoaging<\/h3>\n\n\n\n

UVR exposure accounts for an estimated 80% of the visible signs of skin aging<\/a>. This so-called \u201cphotoaging\u201d is known to correlate with cancer risk<\/a>. It is known that the skin microbiome<\/a> is influenced by chronological and physiological skin aging. In addition to causing local (skin)<\/a> changes in the microbiome, UVR can also lead to intestinal<\/a> changes.<\/p>\n\n\n\n

Probiotics<\/em><\/p>\n\n\n\n

Many studies<\/a> involving humans have supported the role of probiotics in attenuating UV-induced skin damage. Strains of probiotic bacteria including Lactobacillus johnsonii<\/em><\/a>, Lactiplantibacillus plantarum<\/em><\/a>, and Bifidobacterium breve<\/em><\/a> <\/em>have been shown to have beneficial effects on photoaging in humans or mice. A review of research testing the effects of probiotics in photoaging is available in this Table<\/a>.<\/p>\n\n\n\n

Prebiotics<\/em><\/em><\/p>\n\n\n\n

Prebiotics such as galactooligosaccharides<\/a> orally administeredhave been shownto prevent trans-epidermal water loss and prevent skin damage in hairless mice.<\/p>\n\n\n\n

Anti-tumor effects of the microbiome<\/h3>\n\n\n\n

UVR exposure is linked with the development of different types of skin cancers including squamous cell carcinoma (SCC). SCC can develop from an actinic keratosis, which is a typical lesion of UVR- damaged skin. In recent studies<\/a>, skin with lesions was observed to host different commensal strains than skin without lesions. An altered microbial landscape in cancerous skin may play a role in disease pathogenesis and\/or progression.<\/p>\n\n\n\n

Probiotics<\/em><\/p>\n\n\n\n

In one study<\/a>, oral intake of lipoteichoic acid from Lacticaseibacillus rhamnosus<\/em> decreased the number of UV-induced skin tumors in hairless mice.<\/p>\n\n\n\n

Prebiotics<\/em><\/p>\n\n\n\n

Oral intake of prebiotics such as inulin and mucin has been reported to induce Bifidobacterium<\/em> spp<\/a>. and Akkermansia muciniphila<\/em> <\/a>which may be involved in inhibiting melanoma growth<\/a>.<\/p>\n\n\n\n

While these results with selected probiotics and prebiotics are promising, we should interpret them with caution and look forward to further study results.<\/p>\n\n\n\n

Enhancement of the UVR-induced immune suppression<\/h3>\n\n\n\n

UVR has a profound effect on the skin\u2019s immune system<\/a>. The skin microbiome may have a role in UVR-induced immune suppression. For example, in a study<\/a> using germ-free mice, the absence of a microbiome enhanced UVR-induced immune suppression. In contrast, mice with a microbiome showed diminished UVR-induced immune suppression.<\/p>\n\n\n\n

Protection in UVR-induced skin inflammation<\/h3>\n\n\n\n

Inflammatory skin diseases such as systemic lupus erythematosus (SLE)<\/a> and polymorphic light eruption (PLE)<\/a> are linked to UVR exposures. While the mechanisms are not clear, recent research suggests that UVR-induced changes in microbial communities of the skin may be involved in their pathogenesis. <\/p>\n\n\n\n

The use of topical anti-inflammatory probiotics could be beneficial.<\/p>\n\n\n\n

In one study, Limosilactobacillus reuteri<\/em> <\/a>showed anti-inflammatory properties on reconstructed human skin models upon UVR-induced inflammation.<\/p>\n\n\n\n

Takeaway<\/h2>\n\n\n\n

The use of probiotics and prebiotics to modulate the intestinal microbiota that support the skin immune response or the skin microbiota is promising in protecting the skin against UVR-induced skin damage. The number of human studies is, however, still limited and formulations that promote a commensal microbiome that can protect against UVR and suppress the growth of pathogens should be further explored.<\/p>\n\n\n\n

In the meantime, slather on your high-SPF sunscreen this summer.<\/p>\n\n\n\n

Key references<\/h2>\n\n\n\n

Bosman, Else S et al. \u201cSkin Exposure to Narrow Band Ultraviolet (UVB) Light Modulates the Human Intestinal Microbiome<\/a>.\u201d Frontiers in microbiology<\/em> vol. 10 2410. 24 Oct. 2019, doi:10.3389\/fmicb.2019.02410<\/p>\n\n\n\n

Brenner, Michaela, and Vincent J Hearing. \u201cThe protective role of melanin against UV damage in human skin<\/a>.\u201d Photochemistry and photobiology<\/em> vol. 84,3 (2008): 539-49. doi:10.1111\/j.1751-1097.2007.00226.x<\/p>\n\n\n\n

Burns, Erin M et al. \u201cUltraviolet radiation, both UVA and UVB, influences the composition of the skin microbiome.<\/a>\u201d Experimental dermatology<\/em> vol. 28,2 (2019): 136-141. doi:10.1111\/exd.13854<\/p>\n\n\n\n

Byrd, Allyson L et al. \u201cThe human skin microbiome<\/a>.\u201d Nature reviews. Microbiology<\/em> vol. 16,3 (2018): 143-155. doi:10.1038\/nrmicro.2017.157<\/p>\n\n\n\n

De Pessemier, Britta et al. \u201cGut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions<\/a>.\u201d Microorganisms vol. 9,2 353. 11 Feb. 2021, doi:10.3390\/microorganisms9020353<\/p>\n\n\n\n

Everard, Amandine et al. \u201cCross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity<\/a>.\u201d Proceedings of the National Academy of Sciences of the United States of America<\/em> vol. 110,22 (2013): 9066-71. doi:10.1073\/pnas.1219451110<\/p>\n\n\n\n

Fehlbaum, Sophie et al. \u201cIn Vitro<\/em> Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota<\/a>.\u201d International journal of molecular sciences<\/em> vol. 19,10 3097. 10 Oct. 2018, doi:10.3390\/ijms19103097<\/p>\n\n\n\n

Friedrich, Adri\u00e1n D et al. \u201cOral administration of lipoteichoic acid from Lactobacillus rhamnosus GG overcomes UVB-induced immunosuppression and impairs skin tumor growth in mice<\/a>.\u201d European journal of immunology<\/em> vol. 49,11 (2019): 2095-2102. doi:10.1002\/eji.201848024<\/p>\n\n\n\n

Grice, Elizabeth A. \u201cThe skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease<\/a>.\u201d Seminars in cutaneous medicine and surgery<\/em> vol. 33,2 (2014): 98-103. doi:10.12788\/j.sder.0087<\/p>\n\n\n\n

Gu\u00e9niche, Audrey et al. \u201cProbiotics for photoprotection<\/a>.\u201d Dermato-endocrinology<\/em> vol. 1,5 (2009): 275-9. doi:10.4161\/derm.1.5.9849<\/p>\n\n\n\n

Halder, R M, and K M Bang. \u201cSkin cancer in blacks in the United States<\/a>.\u201d Dermatologic clinics<\/em> vol. 6,3 (1988): 397-405.<\/p>\n\n\n\n

Hong, Ki-Bae et al. \u201cPhotoprotective effects of galacto-oligosaccharide and\/or Bifidobacterium longum supplementation against skin damage induced by ultraviolet irradiation in hairless mice<\/a>.\u201d International journal of food sciences and nutrition<\/em> vol. 66,8 (2015): 923-30. doi:10.3109\/09637486.2015.1088823<\/p>\n\n\n\n

Huang, Cancan et al. \u201cDisordered cutaneous microbiota in systemic lupus erythematosus<\/a>.\u201d Journal of autoimmunity vol. 108 (2020): 102391. doi:10.1016\/j.jaut.2019.102391<\/p>\n\n\n\n

Khmaladze, Ia et al. \u201cLactobacillus reuteri DSM 17938-A comparative study on the effect of probiotics and lysates on human skin<\/a>.\u201d Experimental dermatology<\/em> vol. 28,7 (2019): 822-828. doi:10.1111\/exd.13950<\/p>\n\n\n\n

Kim, Hyun Mee et al. \u201cOral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging<\/a>.\u201d Journal of microbiology and biotechnology<\/em> vol. 24,11 (2014): 1583-91. doi:10.4014\/jmb.1406.06038<\/p>\n\n\n\n

Kober, Mary-Margaret, and Whitney P Bowe. \u201cThe effect of probiotics on immune regulation, acne, and photoaging<\/a>.\u201d International journal of women’s dermatology<\/em> vol. 1,2 85-89. 6 Apr. 2015, doi:10.1016\/j.ijwd.2015.02.001<\/p>\n\n\n\n

Kripke, M L, and M S Fisher. \u201cImmunologic aspects of tumor induction by ultraviolet radiation<\/a>.\u201d National Cancer Institute monograph<\/em> ,50 (1978): 179-83.<\/p>\n\n\n\n

Li, Yan et al. \u201cGut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-\/-<\/sup> mice<\/a>.\u201d Nature communications<\/em> vol. 10,1 1492. 2 Apr. 2019, doi:10.1038\/s41467-019-09525-y<\/p>\n\n\n\n

Meisel, Jacquelyn S et al. \u201cCommensal microbiota modulate gene expression in the skin.<\/a>\u201d Microbiome<\/em> vol. 6,1 20. 30 Jan. 2018, doi:10.1186\/s40168-018-0404-9<\/p>\n\n\n\n

Ouwehand A.C., Tiihonen K., Lahtinen S. The Potential of Probiotics and Prebiotics for Skin Health<\/a>. In: Farage M.A., Miller K.W., Maibach H.I., editors. Textbook of Aging Skin.<\/em> Springer; Berlin\/Heidelberg, Germany: 2010. pp. 799\u2013809.<\/p>\n\n\n\n

Patra, VijayKumar et al. \u201cPotential of Skin Microbiome, Pro- and\/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure<\/a>.\u201d Nutrients<\/em> vol. 12,6 1795. 17 Jun. 2020, doi:10.3390\/nu12061795<\/p>\n\n\n\n

Patra, VijayKumar et al. \u201cSkin Microbiome Modulates the Effect of Ultraviolet Radiation on Cellular Response and Immune Function<\/a>.\u201d iScience<\/em> vol. 15 (2019): 211-222. doi:10.1016\/j.isci.2019.04.026<\/p>\n\n\n\n

Patra, VijayKumar, and Peter Wolf. \u201cMicrobial elements as the initial triggers in the pathogenesis of polymorphic light eruption?.<\/a>\u201d Experimental dermatology vol. 25,12 (2016): 999-1001. doi:10.1111\/exd.13162<\/p>\n\n\n\n

Peyrat, Laure-Anne et al. \u201cTerrestrial Microorganisms: Cell Factories of Bioactive Molecules with Skin Protecting Applications<\/a>.\u201d Molecules (Basel, Switzerland)<\/em> vol. 24,9 1836. 13 May. 2019, doi:10.3390\/molecules24091836<\/p>\n\n\n\n

Rastogi, Rajesh P, and Aran Incharoensakdi. \u201cAnalysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556.<\/a>\u201d Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology<\/em> vol. 13,7 (2014): 1016-24. doi:10.1039\/c4pp00013g<\/p>\n\n\n\n

Rong, J et al. \u201cSkin resistance to UVB-induced oxidative stress and hyperpigmentation by the topical use of Lactobacillus helveticus NS8-fermented milk supernatant<\/a>.\u201d Journal of applied microbiology<\/em> vol. 123,2 (2017): 511-523. doi:10.1111\/jam.13506<\/p>\n\n\n\n

Shibagaki, Nakako et al. \u201cAging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria<\/a>.\u201d Scientific reports<\/em> vol. 7,1 10567. 5 Sep. 2017, doi:10.1038\/s41598-017-10834-9<\/p>\n\n\n\n

Slominski, Andrzej T et al. \u201cHow UV Light Touches the Brain and Endocrine System Through Skin, and Why.<\/a>\u201d Endocrinology<\/em> vol. 159,5 (2018): 1992-2007. doi:10.1210\/en.2017-03230<\/p>\n\n\n\n

Sugimoto, Saho et al. \u201cPhotoprotective effects of Bifidobacterium breve supplementation against skin damage induced by ultraviolet irradiation in hairless mice<\/a>.\u201d Photodermatology, photoimmunology & photomedicine<\/em> vol. 28,6 (2012): 312-9. doi:10.1111\/phpp.12006<\/p>\n\n\n\n

Wendt, Judith et al. \u201cSite-dependent actinic skin damage as risk factor for melanoma in a central European population.<\/a>\u201d Pigment cell & melanoma research<\/em> vol. 25,2 (2012): 234-42. doi:10.1111\/j.1755-148X.2011.00946.x<\/p>\n","protected":false},"excerpt":{"rendered":"

While summer days bring more hours of welcome daylight, longer exposure to the sun\u2019s ultraviolet radiation (UVR) can damage the skin. Sunburn, inflammation, photoaging, skin cancer, and\/or immune modulation can result. New research suggests that the skin microbiome may be a feasible target for novel strategies using probiotics and prebiotics for protection against UVR-induced skin […]<\/p>\n","protected":false},"author":4,"featured_media":8067,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_bbp_topic_count":0,"_bbp_reply_count":0,"_bbp_total_topic_count":0,"_bbp_total_reply_count":0,"_bbp_voice_count":0,"_bbp_anonymous_reply_count":0,"_bbp_topic_count_hidden":0,"_bbp_reply_count_hidden":0,"_bbp_forum_subforum_count":0,"_eb_attr":"","_genesis_hide_title":false,"_genesis_hide_breadcrumbs":false,"_genesis_hide_singular_image":false,"_genesis_hide_footer_widgets":false,"_genesis_custom_body_class":"","_genesis_custom_post_class":"","_genesis_layout":"","footnotes":""},"categories":[1,369],"tags":[725,724],"_links":{"self":[{"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/posts\/8061"}],"collection":[{"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/users\/4"}],"replies":[{"embeddable":true,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/comments?post=8061"}],"version-history":[{"count":5,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/posts\/8061\/revisions"}],"predecessor-version":[{"id":8066,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/posts\/8061\/revisions\/8066"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/media\/8067"}],"wp:attachment":[{"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/media?parent=8061"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/categories?post=8061"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/internationalprobiotics.org\/home\/wp-json\/wp\/v2\/tags?post=8061"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}